<thead id="wtvt8"></thead>

      <label id="wtvt8"></label>
        1. <li id="wtvt8"><big id="wtvt8"></big></li><span id="wtvt8"><optgroup id="wtvt8"></optgroup></span>
            国产黑色丝袜在线播放,97视频精品全国免费观看,日韩精品中文字幕有码,在线播放深夜精品三级,免费AV片在线观看网址,福利一区二区在线观看,亚洲深夜精品在线观看,2019亚洲午夜无码天堂

            珠海真理光學(xué)儀器有限公司

            不同激光粒度儀測試結(jié)果不一致的深層原因分析

            時間:2020-8-25 閱讀:3925
            分享:
              在粒度測量的諸多手段中,激光粒度儀無疑占據(jù)著統(tǒng)治地位。但在激光粒度儀的實(shí)際應(yīng)用中,人們經(jīng)常遇到一個令人困惑的現(xiàn)象:同一個樣品給不同品牌甚至同一品牌不同型號的激光粒度儀測量時,所得結(jié)果有很大差異(指大于合理的允許誤差范圍)。剔除取樣代表性、操作過失等人為因素的影響,作者認(rèn)為這種差異本質(zhì)上來自于當(dāng)前各種激光粒度儀的內(nèi)在技術(shù)缺陷。
             
              本文首先簡述激光粒度儀的工作原理,闡明在理想條件下不同儀器應(yīng)該能得到相同的測試結(jié)果的道理。然后討論當(dāng)前具有代表性的幾種激光粒度儀的光學(xué)系統(tǒng)缺陷,這些缺陷造成承載被測顆粒大小信息的散射光分布信號不能被接收,從而導(dǎo)致終的誤差。不同儀器有不同的光學(xué)缺陷以及為彌補(bǔ)光學(xué)缺陷采取了各自獨(dú)立的軟件修飾方法,導(dǎo)致相互間結(jié)果出現(xiàn)差異。
             
              此外,作者所在研究團(tuán)隊(duì)發(fā)現(xiàn),對透明顆粒,激光粒度儀得以建立的基本物理規(guī)律(顆粒越小,散射角度越大)在有些粒徑區(qū)間并不成立,我們稱之為愛里斑的反常變化(ACAD)現(xiàn)象[1]。如果用通常的(把散射光分布轉(zhuǎn)換成粒度分布)反演算法,該現(xiàn)象會導(dǎo)致反常區(qū)域內(nèi)測量結(jié)果的不穩(wěn)定或明顯偏離真實(shí)(例如出現(xiàn)不應(yīng)有的多峰分布)。為了掩飾這種偏差,不同的儀器廠家也用了不同的修飾方法,從而導(dǎo)致相互之間結(jié)果的不可比。下文將逐一展開討論。
             
              1   激光粒度儀的工作原理
             
              激光粒度儀所依據(jù)的物理原理是:當(dāng)光束照射到顆粒上時,會偏離原來的傳播方向。當(dāng)顆粒較大,尤其當(dāng)顆粒具有較強(qiáng)的吸收性時,這種偏離的規(guī)律可以用光的衍射理論[2]描述,因此該儀器在誕生時的正式名稱是“激光衍射法粒度分析儀”。但是在更一般的情況下,例如顆粒尺寸小于光波長,或者顆粒尺寸與光波長的尺度相近,并且對照明光透明,衍射理論不再適用,這時就需要用嚴(yán)格建立在麥克斯韋電磁波理論基礎(chǔ)上的米氏散射理論[3]來描述。近年來上越來越多地把這種儀器稱為“靜態(tài)光散射法粒度分析儀”。這里強(qiáng)調(diào)“靜態(tài)”,是因?yàn)檫€有一種“動態(tài)”光散射粒度儀,又稱為“動態(tài)光散射納米粒度儀”。這是兩種不同原理、適用于不同粒徑范圍的粒度分析儀,但都用激光作為光源,且都利用了顆粒的散射光信號。靜態(tài)光散射粒度儀認(rèn)為在某個測量點(diǎn)上,散射光的信號不隨時間變化(因而是靜態(tài)的),測量粒度是利用不同散射角上的散射光信號,即散射光的空間分布;而動態(tài)光散射粒度儀是在一個固定的散射角上測量散射光隨時間的變化。
             
              在一定條件下,顆粒越大,散射光的分布范圍越廣,見圖1。當(dāng)顆粒為理想圓球時(粒度測量中,都假設(shè)顆粒是理想圓球),散射光斑由中心的亮斑和外圍一系列明暗相間的同心圓環(huán)組成,這樣的光斑稱為“愛里斑(Airy Disk)[2]”。中心亮斑包含了衍射光(從一般意義上說,顆粒的散射光可近似看成衍射光和幾何散射光的相干疊加,但是幾何散射光不包含顆粒大小的信息,換言之,顆粒大小信息只包含在衍射光的分布中)總能量的83.8%[2],因此通常把中心亮斑的角半徑(從光斑中心點(diǎn)到個暗環(huán)的角距離)作為愛里斑的半徑,或作為顆粒對光的散射角,如圖1中的θA。業(yè)界普遍認(rèn)為:顆粒越小,θA越大。或者說:顆粒大小與愛里斑大小有一一對應(yīng)關(guān)系。
             
            圖1   顆粒對光的散射現(xiàn)象示意圖
             
              激光粒度儀的原理圖見圖2。從激光器發(fā)出的細(xì)激光束經(jīng)過空間濾波和準(zhǔn)直,成為一束平行、純凈的擴(kuò)展光束,然后照射到測量池內(nèi)。被測顆粒分散懸浮在池內(nèi)的分散介質(zhì)(例如,水)中。入射光如果遇到顆粒,就被散射,形成散射光;沒有遇到顆粒的光仍然是平行光,沿著原來的方向傳播。后者經(jīng)過傅里葉透鏡后被會聚到光電探測器的中心,并穿過中心上的小孔,被中心探測器接收。散射光經(jīng)過傅里葉透鏡后,相同散射角的光被聚焦到探測器的同一點(diǎn)上。因此探測器上的一個點(diǎn)代表一個散射角θ。探測器由多個獨(dú)立的探測單元組成,每個單元對應(yīng)一個散射角區(qū)間。單元序號從探測器的中心往外,逐漸增大。探測單元的中心對應(yīng)的散射角以及單元的接收面積均隨著序號增大呈指數(shù)式增大。每個單元輸出的光電信號正比于投射到該單元上的散射光功率(習(xí)慣上稱為“光能”)。所有單元輸出的信號組成了散射光能分布。雖然任意大小的顆粒的散射光斑的中心亮斑都是中心強(qiáng)而邊緣弱,但是散射光能分布的峰值則總是處在某個探測單元上。顆粒越小,散射光斑越大,散射光能分布的峰值就越往外,如圖3所示。
             
            圖2   激光粒度儀工作原理示意圖
             
            圖3  散射光能分布示例
             
              從形式上看,儀器通過測量直接得到散射光的分布e后,求解上述線性方程組,就可得到粒度分布,即粒度分布w。但實(shí)際上該方程的系數(shù)矩陣K的階數(shù)高達(dá)30以上,通常是病態(tài)的,不能直接求解,而只能通過一種特定的迭代算法求出w。這個迭代算法是激光粒度儀的關(guān)鍵技術(shù)之一,稱作“反演算法”。
             
              由于現(xiàn)實(shí)的儀器都存在測量誤差,即直接測量得到的散射光分布e與被測顆粒散射形成的真實(shí)的散射光分布有一定的偏差,因而通過反演計(jì)算獲得的粒度分布也與真實(shí)的粒度分布有一定的偏差。在此將反演計(jì)算得到的粒度分布記為w',  與之對應(yīng)的光能分布為
             
              從以上敘述可以看出,激光粒度儀能給出測量結(jié)果的要素有三:
             
              (1)獲得足夠的散射光能分布;
             
              (2)粒徑與散射光能分布之間有足夠好的一一對應(yīng)關(guān)系(下文稱為“特異性”)
             
              (3)反演算法合格(通過模擬計(jì)算可以驗(yàn)證)
             
              激光粒度儀經(jīng)過幾十年的發(fā)展,已經(jīng)有多種公開報道的可用于實(shí)際的反演算法[4],實(shí)現(xiàn)上述第(3)條并不難。所以,只要第(1)、(2)條得到滿足,就可獲得足夠的粒度分布數(shù)據(jù)。而正確的結(jié)果只有一個,因此如果不同的激光粒度儀都能給出正確的結(jié)果,那么這些結(jié)果在合理的誤差范圍內(nèi)就應(yīng)該是一致的。下面看一個實(shí)測的例子:
             
              圖4是兩種不同儀器測量同一樣品的測量數(shù)據(jù)。
             
            (a)真理光學(xué)LT2200儀器的測量結(jié)果
             
            (b)某國外儀器的測量結(jié)果
             
              圖4 兩種激光粒度儀測同一種陶瓷介子粉的測試報告
             
              這兩種儀器給出的D50值分別為75.76µm和75.93µm,相對*.2%;D90值分別為127.02 µm和126.13 µm,相對*.7%;D10值分別為41.51µm和44.28µm,相對誤差6.5%。可見這兩個結(jié)果的吻合度相當(dāng)好。
             
              下文討論造成儀器之間結(jié)果不一致的兩個內(nèi)在因素。
             
              2   大角散射光測量盲區(qū)對亞微米顆粒測量的影響
             
              顆粒的散射光分布在0到180°的所有方向上。當(dāng)顆粒遠(yuǎn)大于光波長時,散射光的中心光斑主要分布在前向較小的角度上。隨著顆粒的減小,散射光的分布范圍逐步擴(kuò)大,直至后向(大于90°)。因此,一臺理想的激光粒度儀應(yīng)該能夠在全角度上測量散射光。然而目前商品化的激光粒度儀都不能覆蓋0到180°的范圍。
             
              圖2所示的激光粒度儀的光學(xué)系統(tǒng)是經(jīng)典的光學(xué)系統(tǒng)。早期的激光粒度儀幾乎全都采用這種光路。它只能測量前向的散射光,其大散射角的接收能力受傅里葉透鏡的孔徑限制。現(xiàn)存的采用經(jīng)典光路的儀器的透鏡孔徑對測量池中心的大張(半)角,從空氣中看為40°。如果顆粒懸浮在水介質(zhì)中,那么從水中看,該系統(tǒng)能接收的大散射角只有29°。
             
            圖5 逆傅里葉變換系統(tǒng)示意圖
             
              圖5是當(dāng)前較流行的一種光學(xué)系統(tǒng),稱為“逆傅里葉變換系統(tǒng)”。它用會聚光照明被測顆粒。通過數(shù)學(xué)推導(dǎo)可以知道,在小散射角上,它與經(jīng)典傅里葉變換系統(tǒng)一樣,也能實(shí)現(xiàn)同方向散射光的理想聚焦。但在大角度上聚焦不良,不過可通過光學(xué)計(jì)算,在散射光能矩陣上對聚焦不良帶來的不利影響加以彌補(bǔ)。它的好處是突破了傅里葉透鏡孔徑對系統(tǒng)接收角的制約,擴(kuò)展了激光粒度儀的測量角。
             
              雖然突破了傅里葉透鏡孔徑的限制,它的測量角的上限還要受光線全反射規(guī)律的限制。假設(shè)顆粒處在水中,散射光從水中傳播到玻璃再到空氣,經(jīng)過了兩次折射。由于空氣的折射率低于水的折射率,由光的折射定律可以知道,光線在空氣中的出射角總是大于水中的入射角。當(dāng)照明光垂直入射到測量池時,水中散射光的散射角等于散射光對玻璃的入射角。當(dāng)水中的散射角約為49°時,空氣中的出射角等于90°,如圖6(a)所示。散射角再增大時,散射光將被玻璃/空氣界面反射,不能出射到空氣中。這種現(xiàn)象稱為“光的全反射”,而此時的入射角稱為“全反射的臨界角”。實(shí)際的激光粒度儀不可能把探測單元放置在90°的位置。例如某國外儀器空氣中的大角探測器位置為60°(見圖6(b)),對應(yīng)于水中的散射角為41°。所以該儀器能接收的大前向散射角是41°。在后向上也放置了大60°的探測器,故后向只能接收139°(=180° -41°)以上的 散射光。這樣,這種光學(xué)系統(tǒng)就存在41°到139°的測量盲區(qū),盲區(qū)跨度共98°,見圖8(a)。
             
            (a)全反射臨界角示意圖     (b)實(shí)際儀器的大接收角
             
              圖6  光的全反射現(xiàn)象及其對激光粒度儀大接收角的限制
             
              真理光學(xué)提出了一種斜置的梯形窗口方案,見圖7。在該方案中,窗口玻璃傾斜10°放置,可把散射光的臨界角擴(kuò)展7°左右,同時前向玻璃加厚,把玻璃/空氣界面的一部分做成30°的斜面,使原本在玻璃/空氣界面上接近或大于臨界角的散射光的入射角小于臨界角。這種結(jié)構(gòu)能讓可接收的大散射角(在水中看)擴(kuò)展到80°,后向的小散射角則減到45°,測量盲區(qū)為80°到135°,盲區(qū)跨度共55°,見圖8(b)。
             
            圖7  斜置的梯形測量窗口示意圖
             
            圖8 兩種典型的逆傅里葉變換系統(tǒng)的散射光測量盲區(qū)
             
              圖9(a)是0.3,0.25,…, 0.05 µm的顆粒產(chǎn)生的理想的散射光能分布圖,其中假設(shè)探測器的面積和位置如本文第1節(jié)所述,光波長為0.633 µm,顆粒折射率為1.59,介質(zhì)折射率為1.33。如果采用通常的逆傅里葉變換系統(tǒng)接收,能得到的實(shí)際散射光能分布范圍如圖9(b)所示。用這種光路測量散射光,丟失了0.3 µm及以細(xì)顆粒散射光能分布的所有峰值信息,而峰值信息所包含的粒度特征多,即特異性強(qiáng)。圖9(c) 是斜置梯形窗口系統(tǒng)能獲得的散射光能分布曲線,基本包含了所有顆粒的峰值信息。據(jù)此可以大體推斷,后者對測量0.3µm以細(xì)顆粒有更好的效果。
             
            (a)散射光的全角度分布圖
             
            (b)通常的逆傅里葉變換系統(tǒng)能接收的散射光分布
             
            (c)采用斜置梯形窗口的逆傅里葉變換系統(tǒng)能接收的散射光分布 
              圖9  多種細(xì)顆粒(小于0.3µm)的散射光能分布以及實(shí)際被接收到的光能分布
             
              下面舉一個實(shí)際測量例子。樣品是一種水性石墨烯。圖10(a)是用真理光學(xué)LT3600Plus儀器(采用了斜置梯形窗口技術(shù))測得的粒度分布。圖10(b)是對應(yīng)的實(shí)測光能分布與反演擬合的光能分布的對比。所得結(jié)果D50、D10、D90分別為0.135µm、0.047 µm和0.405 µm,粒度分布曲線呈單峰,擬合殘差1.27%,數(shù)值在合理范圍內(nèi)。
             
            圖10  一種水性石墨樣品用真理光學(xué)LT3600Plus測量的結(jié)果 
              (a)粒度分布;(b)實(shí)測光能與擬合光能對比曲線
             
              圖11是某國外儀器(采用通常的逆傅里葉變換光學(xué)系統(tǒng))對上述水性石墨烯的測量結(jié)果。圖11(a)和(d)都是該儀器在同一次取樣進(jìn)行多次測量時給出來的粒度分布數(shù)據(jù),兩個結(jié)果來回跳動;圖(b)和(d)是對應(yīng)的實(shí)測光能和擬合光能分布的對比曲線。按照結(jié)果1,D50、D10、D90分別為0.084µm、0.055µm和0.477 µm;按照結(jié)果2,D50、D10、D90分別為0.119µm、0.062 µm和0.227 µm。
             
            圖11  一種水性石墨樣品用某國外儀器測量的結(jié)果 
              (a)粒度分布1;(b)實(shí)測光能與擬合光能對比曲線1
              (c)粒度分布2;(b)實(shí)測光能與擬合光能對比曲線2
             
              和圖10所示結(jié)果對比,看得出來兩種儀器的結(jié)果相差頗大。不過可以基本判定真理光學(xué)儀器的結(jié)果更加可靠。理據(jù)是:真理光學(xué)的結(jié)果(A)結(jié)果穩(wěn)定,(B)粒度分布的峰形比較合理,(C)擬合殘差比較小;而國外儀器的結(jié)果(A)測量結(jié)果在兩組數(shù)之間來回跳動,很不穩(wěn)定,(B)其中一種結(jié)果是雙峰,不符合常理,(C)兩種結(jié)果的光能擬合情況都很差,殘差都在7%以上。
             
              各家儀器都有自己*的光路,但都未能完*全角度測量問題,不過各家解決的程度有不同,因而遇到顆粒很小的情況時,有的測量結(jié)果更接近真實(shí),有的有較大偏離,從而造成結(jié)果不一致。
             
              3   愛里斑的反常變化(ACAD)對0.4µm~10µm粒度測量的困擾
             
              3.1  ACAD現(xiàn)象及其規(guī)律
             
              自激光粒度儀誕生直到前不久的近50年來,業(yè)內(nèi)人士都不曾懷疑過這樣的光散射規(guī)律: 顆粒越小,散射光的分布范圍越大(愛里斑越大),即散射光的分布范圍隨著顆粒的減小而單調(diào)增大,從而了顆粒大小與散射光分布之間的一一對應(yīng)關(guān)系。這是激光粒度儀能夠正常工作的物理基礎(chǔ)。但是真理光學(xué)和天津大學(xué)的聯(lián)合研究團(tuán)隊(duì)卻發(fā)現(xiàn)[ 1],對于透明顆粒,上述規(guī)律在某些特定的粒徑區(qū)間不成立,即有時會出現(xiàn)顆粒越小,愛里斑也越小的現(xiàn)象。圖12是波長取0.633µm,顆粒折射率1.59,介質(zhì)折射率1.33時,2至4µm之間的各種顆粒的散射光斑圖樣。其中3µm顆粒的愛里斑尺寸是7.98°,而3.5µm顆粒的愛里斑尺寸則是13.31°,出現(xiàn)了反常現(xiàn)象,我們稱之為愛里斑的反常變化(Anomalous Change of Airy Disk,ACAD)。
             
            圖12  愛里斑的反常變化現(xiàn)象
             
            圖13  愛里斑尺寸隨無因次參量的變化
             
              顆粒如果具有吸收性,那么隨著吸收系數(shù)的增大,反常現(xiàn)象會逐步減弱,直至消失。在圖14中,圖(a)表示顆粒吸收系數(shù)為0.05時的愛里斑大小隨無因次參量的變化曲線,可以看出,曲線的振蕩幅度顯著減小;圖(b)表示顆粒吸收系數(shù)為0.10時,曲線的振蕩消失。
             
            圖14  反常現(xiàn)象隨著顆粒吸收系數(shù)的增大而減弱
             
              3.2  ACAD對粒度測量的困擾
             
              ACAD將導(dǎo)致在反常區(qū)附近一個愛里斑尺寸多可對應(yīng)3個不同的粒徑。如圖15,α1、α2、α3等3個不同的無因次參量對應(yīng)的愛里斑尺寸都是10°。從散射光能分布看,反常現(xiàn)象會導(dǎo)致光能分布峰值位置出現(xiàn)顛倒。在正常的散射情況下,顆粒越大,散射光能的峰值位置越靠近坐標(biāo)的中心;而在圖16中,4.0µm顆粒的峰值位置在3.5微米峰值位置的外側(cè)。可見不論從散射光強(qiáng)分布(愛里斑)角度還是散射光能分布角度看,ACAD都導(dǎo)致了顆粒尺寸與散射光場分布的一一對應(yīng)關(guān)系的破壞,從而使處在反常區(qū)的顆粒的粒度測量結(jié)果變得不穩(wěn)定或者結(jié)果不真實(shí)(一般體現(xiàn)為粒度分布曲線的振蕩,見圖17)。文獻(xiàn)[5]對此有更嚴(yán)謹(jǐn)?shù)恼撟C。
             
            圖15  同一愛里斑尺寸對應(yīng)3個不同的粒徑
             
            圖16 在反常區(qū)附近散射光能分布的峰值位置出現(xiàn)了顛倒
             
              圖17 是某國外儀器用“通用模式”測量3.0µm聚苯乙烯微粒標(biāo)樣的結(jié)果,出現(xiàn)了兩個峰,并且兩個峰的峰值位置都不在3.0µm上。聚苯乙烯顆粒的折射率為1.59,分散在水中時,相對折射率為1.20。從表1可以查到,反常中心位置為3.20 µm。可見該顆粒正好處在反常區(qū)中心附近,故而得不到正確的測量結(jié)果。
             
            圖17  某國外儀器用“通用模式”測量3.0µm聚苯乙烯微粒標(biāo)樣的結(jié)果
             
              盡管ACAD作為一種客觀的物理現(xiàn)象,一直都存在,并且困擾著激光衍射法粒度測量技術(shù)的應(yīng)用,但是在本團(tuán)隊(duì)的論文發(fā)表前,都沒有公開的相關(guān)報導(dǎo),儀器更沒有提出解決這一困擾的根本辦法。目前所做的,對單分散樣品(大多指標(biāo)準(zhǔn)微粒),廠家提供的操作指引上選“單峰窄分布”模式,這時對聚苯乙烯材料的3µm標(biāo)樣,進(jìn)行“特殊處理”,以得到看上去正確的結(jié)果。對一般的透明樣品,如果粒徑分布范圍部分或全部處在反常區(qū),則在進(jìn)行反演分析時,人為給折射率加上一個虛部,例如,0.1。對一個給定的顆粒折射率,只要人為加上去的吸收系數(shù)足夠大,那么在計(jì)算散射矩陣(各種粒徑散射光能分布的組合)時,光能分布峰值位置顛倒的情況就會消失。但顆粒實(shí)際還是無吸收的,強(qiáng)行認(rèn)為顆粒有吸收,將造成實(shí)測的光能分布與反演計(jì)算時認(rèn)為的光能分布不相符。在不加修飾的情況下,反演結(jié)果將在粒徑1µm附近鼓起一個假峰(Ghost Peak)。
             
            圖18  人為給透明顆粒加吸收系數(shù)造成反演數(shù)據(jù)出現(xiàn)假峰
             
              下面用一個數(shù)值模擬的例子進(jìn)行說明。圖18(a)中的藍(lán)色曲線是事先設(shè)定的一種顆粒樣品的粒度分布。假設(shè)顆粒透明,折射率為1.50,處在水介質(zhì)中。它對應(yīng)的散射光能分布如圖(b)中的藍(lán)色曲線所示。假如給顆粒加上一個0.1的吸收系數(shù),那么該顆粒樣品產(chǎn)生的散射光能分布如圖(b)中的紅色曲線所示。藍(lán)、紅兩種曲線相比,藍(lán)色曲線在35到45單元之間鼓起一個小峰,這個小峰等效于一定比例的綠色曲線,也可視為某種粒度分布對應(yīng)的散射光能分布。圖18(b)中三種曲線或散射光能分布用公式可表達(dá)為
              式中,eR、eO、eD是歸一化、矢量形式的散射光能分布,分別表示無吸收顆粒的散射光能分布(即本實(shí)驗(yàn)設(shè)定顆粒真實(shí)的光能分布)、吸收系數(shù)為0.1時相同顆粒樣品產(chǎn)生的散射光能分布,以及這兩種光能分布之差。后者等效于一個粒徑1µm左右的顆粒樣品產(chǎn)生的散射光能分布。因此,如果用0.1吸收的散射矩陣去反演計(jì)算一個透明顆粒樣品產(chǎn)生的光能分布,如圖18(b)中藍(lán)色曲線所示的散射光分布,就會得到圖18(a)中紅色曲線所示的粒度分布,這個粒度分布相較于藍(lán)色曲線所示的粒度分布(即原本的粒度分布),在1µm附近多了一個假峰。
             
              下面再舉一個實(shí)際測試的例子。圖19是一種陶瓷泥漿樣品實(shí)際測量得到的粒度分布曲線。藍(lán)色曲線表示吸收系數(shù)取0得到的粒度分布,紅色曲線表示吸收系數(shù)取0.1得到的粒度分布。兩條曲線相比,紅色曲線在1µm附近顆粒含量明顯偏高。
             
              所以給透明顆粒人為加吸收系數(shù),雖然能掩飾ACAD帶來的測試結(jié)果不穩(wěn)定或者振蕩,但同時會使1µm附近產(chǎn)生一個假的峰,或者引起1µm附近顆粒含量的測試值高于實(shí)際值。
             
            圖19  一種陶瓷泥漿樣品的實(shí)測粒度分布
             
              為了修飾這個假峰,某國外儀器在算法上強(qiáng)行抹平這個假峰。但這會帶來新的問題:如果被測樣品在1µm附近真的有一個峰,也會被強(qiáng)行抹掉,從而造成測量結(jié)果的失真。
             
              圖20是一種人為配制出來的三個峰的二氧化硅樣品。用國外儀器測量時,如果取“通用模式”,則結(jié)果如圖(a)所示,只有一個峰;如果取“多峰窄分布模式”,則在主峰的右側(cè)(大顆粒側(cè))出現(xiàn)一個小峰。該樣品用真理光學(xué)LT3600測量時,共有3個峰:在主峰的左右各有一個小峰,左側(cè)的小峰在1到3µm之間。圖21是該樣品的電鏡照片。從圖(a)460倍放大照片看,確實(shí)存在30µm左右的大顆粒;從圖(b)8000倍放大照片看,也存在1µm到2µm顆粒。可見1到3µm的顆粒是真實(shí)存在的,而國外儀器沒有測到這些顆粒。
             
            圖20 一種二氧化硅樣品“”的粒度測量結(jié)果
             
            圖21  一種二氧化硅樣品的電子顯微鏡照片
             
              從本節(jié)的討論可以看出,當(dāng)被測的透明顆粒處在反常區(qū)時,通常的反演算法得出的粒度分布是不穩(wěn)定或者振蕩的。目前大多數(shù)儀器廠家的處理辦法是,在反演計(jì)算時給顆粒加上吸收系數(shù)。這會使得反演得到的粒度分布曲線穩(wěn)定、平滑,但是同時在1µm附近鼓起一個假的峰,或者1µm附近顆粒含量變高。也有的廠家在算法上強(qiáng)行抹平這個假峰,但會導(dǎo)致儀器在1µm附近測量靈敏度降低。真理光學(xué)團(tuán)隊(duì)在對ACAD規(guī)律透徹理解的基礎(chǔ)上,改進(jìn)了反演算法,使其能在大多數(shù)情況下對處在反常區(qū)的透明顆粒進(jìn)行真實(shí)的粒度分布反演,如圖20(c)的結(jié)果。對3µm聚苯乙烯標(biāo)樣也能成功反演。
             
              所以,由于ACAD的困擾,造成各個儀器廠家采取了不同的、有些是修飾性的(并非符合科學(xué)的)算法,從而導(dǎo)致相互間結(jié)果不一致。
             
              3.3  ACAD影響的粒徑范圍以及對激光粒度儀用戶的建議
             
            表1  各種折射率下的反常區(qū)中心位置 

              假設(shè)顆粒分散在水中,那么m=1.05對應(yīng)于折射率1.40,接近已知固體材料折射率的下限,此時反常區(qū)的中心粒徑為13.0µm。m=2.40對應(yīng)于折射率3.19,接近已知固體材料折射率的上限,此時反常區(qū)的中心粒徑為0.396µm。在顆粒折射率未知的情況下,如果被測顆粒的粒徑大于13µm,那么就可確定顆粒不在反常區(qū)內(nèi),不論用哪家的粒度儀,都不必給顆粒人為地加吸收系數(shù)(顆粒實(shí)際有吸收的情況除外),這樣各種激光粒度儀得到的粒度測試結(jié)果應(yīng)該是基本一致的,就如本文圖4所舉的例子。
             
              如果顆粒折射率已知,又是不吸收的,可以查表1或者用本小節(jié)的公式計(jì)算第1個反常區(qū)中心的位置,如果被測粒徑分布不在反常區(qū)中心附近,那么也不必人為給顆粒加吸收系數(shù),這樣可以得到更真實(shí)因而也更可比的結(jié)果。
             
              4結(jié)語
             
              激光粒度測試技術(shù)發(fā)展到今天,還不能說是很完善的技術(shù)。本質(zhì)原因是物理上存在兩大缺陷:大角散射光測量盲區(qū)和愛里斑的反常變化(ACAD)。前者影響0.3µm以細(xì)顆粒的測量,后者影響0.4µm至13µm顆粒的測量。所以,概略地說,對于13µm以粗顆粒的測量,當(dāng)前技術(shù)是比較成熟的,不同儀器的測量結(jié)果應(yīng)該有較好的可比性。
             
              對0.3µm以細(xì)顆粒的測量,有的廠家解決得好一些,有些差一些,但是都沒有完*。這需要全體激光粒度儀廠家的共同努力。如果都能解決全散射角的測量問題,那么各家儀器的測量結(jié)果就應(yīng)該是一致的。
             
              對0.4µm至13µm的顆粒,根本的是要解決ACAD條件下的反演算法問題。目前真理光學(xué)已經(jīng)較好地解決了這個問題,但其他品牌多采取人為加吸收系數(shù)的辦法,這只讓測試結(jié)果看上去比較正常,數(shù)值則已偏離實(shí)際;而且不同的廠家對由此引起1µm附近的假峰的處理方法不一,造成相互間結(jié)果難以對比。對于用戶來說,可參照表1的數(shù)據(jù)或者同一節(jié)中的公式,先查找或計(jì)算被測樣品的反常區(qū)中心位置,如果被測粒度遠(yuǎn)離反常中心,則盡量不要給透明顆粒加吸收系數(shù),這樣能得到更真實(shí)的粒度結(jié)果,不同儀器的用戶都能這么做,相互間的可比性也更好。
             
              后,呼吁中國市場上的所有激光粒度儀廠家,能夠正視激光粒度測試技術(shù)內(nèi)在的缺陷問題,努力解決這些問題,盡快實(shí)現(xiàn)粒度測試結(jié)果的可比。
             
              參考文獻(xiàn)
             
              1.Linchao Pan et.al.Anomalous change of Airy disk with changing size of spherical particles.Journal of Quantitative Spectroscopy&Radiative Transfer 170(2016)83–89
             
              2.M.玻恩,E.沃耳夫.光學(xué)原理(上冊).科學(xué)出版社;1978.P.517
             
              3.Van de Hulst HC.Light scattering by small particles.New York:Dover;1981
             
              4.Santer R,Herman M.Particle size distributions from forward scattered light
             
              using the Chahine inversion scheme.Appl Opt 1983;22:2294–301.
             
              5.Linchao Pan et.al.Indetermination of particle sizing by laser diffraction in the
             
              anomalous size ranges.Journal of Quantitative Spectroscopy&Radiative Transfer 199(2017)20–25

             

            會員登錄

            ×

            請輸入賬號

            請輸入密碼

            =

            請輸驗(yàn)證碼

            收藏該商鋪

            X
            該信息已收藏!
            標(biāo)簽:
            保存成功

            (空格分隔,最多3個,單個標(biāo)簽最多10個字符)

            常用:

            提示

            X
            您的留言已提交成功!我們將在第一時間回復(fù)您~
            撥打電話 產(chǎn)品分類
            在線留言
            主站蜘蛛池模板: xxxx丰满少妇高潮| 国产中文字幕在线一区| 影音先锋啪啪av资源网站| 亚洲乱理伦片在线观看中字| 国产av国片精品一区二区| 澳门永久av免费网站| 国产99视频精品免费专区| 国产永久免费高清在线| 麻豆国产成人AV在线播放| 精品亚洲精品日韩精品| 亚洲熟妇自偷自拍另类| 亚洲爆乳WWW无码专区| 亚洲av永久无码精品天堂久久| 成人免费无遮挡在线播放| 极品白嫩少妇无套内谢| av深夜免费在线观看| 欧美乱码伦视频免费| 亚洲精品成人福利网站| 国产精品av中文字幕| 蜜臀av久久国产午夜| 成人亚洲av免费在线| 国产中文字幕精品喷潮| 亚洲春色在线视频| 中文字幕人妻不卡精品| 99久久婷婷国产综合精品青草漫画| 日韩一区在线中文字幕| 国产中文字幕精品喷潮| 亚洲欧洲精品日韩av| 亚洲精品一区二区妖精| 亚洲理论在线A中文字幕| 中文字幕日韩国产精品| 一区二区三区不卡国产| 中文字幕日韩精品有码| 99中文字幕国产精品| 中文字幕精品人妻丝袜| 亚洲人妻系列中文字幕| 成人3D动漫一区二区三区 | 久久亚洲精品无码播放| 免费AV片在线观看网址| 国产av不卡一区二区| 亚州中文字幕一区二区|